3.129 \(\int \frac {a+b \cosh ^{-1}(c x)}{(d-c^2 d x^2)^{5/2}} \, dx\)

Optimal. Leaf size=162 \[ \frac {2 x \left (a+b \cosh ^{-1}(c x)\right )}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {x \left (a+b \cosh ^{-1}(c x)\right )}{3 d \left (d-c^2 d x^2\right )^{3/2}}-\frac {b \sqrt {c x-1} \sqrt {c x+1} \log \left (1-c^2 x^2\right )}{3 c d^2 \sqrt {d-c^2 d x^2}}+\frac {b \sqrt {c x-1} \sqrt {c x+1}}{6 c d \left (d-c^2 d x^2\right )^{3/2}} \]

[Out]

1/3*x*(a+b*arccosh(c*x))/d/(-c^2*d*x^2+d)^(3/2)+1/6*b*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c/d/(-c^2*d*x^2+d)^(3/2)+2/3
*x*(a+b*arccosh(c*x))/d^2/(-c^2*d*x^2+d)^(1/2)-1/3*b*ln(-c^2*x^2+1)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/c/d^2/(-c^2*d*
x^2+d)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.27, antiderivative size = 189, normalized size of antiderivative = 1.17, number of steps used = 5, number of rules used = 5, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.208, Rules used = {5713, 5691, 5688, 260, 261} \[ \frac {2 x \left (a+b \cosh ^{-1}(c x)\right )}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {x \left (a+b \cosh ^{-1}(c x)\right )}{3 d^2 (1-c x) (c x+1) \sqrt {d-c^2 d x^2}}+\frac {b \sqrt {c x-1} \sqrt {c x+1}}{6 c d^2 \left (1-c^2 x^2\right ) \sqrt {d-c^2 d x^2}}-\frac {b \sqrt {c x-1} \sqrt {c x+1} \log \left (1-c^2 x^2\right )}{3 c d^2 \sqrt {d-c^2 d x^2}} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*ArcCosh[c*x])/(d - c^2*d*x^2)^(5/2),x]

[Out]

(b*Sqrt[-1 + c*x]*Sqrt[1 + c*x])/(6*c*d^2*(1 - c^2*x^2)*Sqrt[d - c^2*d*x^2]) + (2*x*(a + b*ArcCosh[c*x]))/(3*d
^2*Sqrt[d - c^2*d*x^2]) + (x*(a + b*ArcCosh[c*x]))/(3*d^2*(1 - c*x)*(1 + c*x)*Sqrt[d - c^2*d*x^2]) - (b*Sqrt[-
1 + c*x]*Sqrt[1 + c*x]*Log[1 - c^2*x^2])/(3*c*d^2*Sqrt[d - c^2*d*x^2])

Rule 260

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 261

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a + b*x^n)^(p + 1)/(b*n*(p + 1)), x] /; FreeQ
[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]

Rule 5688

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)/(((d1_) + (e1_.)*(x_))^(3/2)*((d2_) + (e2_.)*(x_))^(3/2)), x_Sym
bol] :> Simp[(x*(a + b*ArcCosh[c*x])^n)/(d1*d2*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x]), x] + Dist[(b*c*n*Sqrt[1 + c*x
]*Sqrt[-1 + c*x])/(d1*d2*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x]), Int[(x*(a + b*ArcCosh[c*x])^(n - 1))/(1 - c^2*x^2),
 x], x] /; FreeQ[{a, b, c, d1, e1, d2, e2}, x] && EqQ[e1, c*d1] && EqQ[e2, -(c*d2)] && GtQ[n, 0]

Rule 5691

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d1_) + (e1_.)*(x_))^(p_)*((d2_) + (e2_.)*(x_))^(p_), x_Symbol]
 :> -Simp[(x*(d1 + e1*x)^(p + 1)*(d2 + e2*x)^(p + 1)*(a + b*ArcCosh[c*x])^n)/(2*d1*d2*(p + 1)), x] + (Dist[(2*
p + 3)/(2*d1*d2*(p + 1)), Int[(d1 + e1*x)^(p + 1)*(d2 + e2*x)^(p + 1)*(a + b*ArcCosh[c*x])^n, x], x] - Dist[(b
*c*n*(-(d1*d2))^(p + 1/2)*Sqrt[1 + c*x]*Sqrt[-1 + c*x])/(2*(p + 1)*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x]), Int[x*(-1
 + c^2*x^2)^(p + 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d1, e1, d2, e2}, x] && EqQ[e1,
c*d1] && EqQ[e2, -(c*d2)] && GtQ[n, 0] && LtQ[p, -1] && NeQ[p, -3/2] && IntegerQ[p + 1/2]

Rule 5713

Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Dist[((-d)^IntPart[p]*(
d + e*x^2)^FracPart[p])/((1 + c*x)^FracPart[p]*(-1 + c*x)^FracPart[p]), Int[(1 + c*x)^p*(-1 + c*x)^p*(a + b*Ar
cCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[c^2*d + e, 0] &&  !IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {a+b \cosh ^{-1}(c x)}{\left (d-c^2 d x^2\right )^{5/2}} \, dx &=\frac {\left (\sqrt {-1+c x} \sqrt {1+c x}\right ) \int \frac {a+b \cosh ^{-1}(c x)}{(-1+c x)^{5/2} (1+c x)^{5/2}} \, dx}{d^2 \sqrt {d-c^2 d x^2}}\\ &=\frac {x \left (a+b \cosh ^{-1}(c x)\right )}{3 d^2 (1-c x) (1+c x) \sqrt {d-c^2 d x^2}}-\frac {\left (2 \sqrt {-1+c x} \sqrt {1+c x}\right ) \int \frac {a+b \cosh ^{-1}(c x)}{(-1+c x)^{3/2} (1+c x)^{3/2}} \, dx}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {\left (b c \sqrt {-1+c x} \sqrt {1+c x}\right ) \int \frac {x}{\left (-1+c^2 x^2\right )^2} \, dx}{3 d^2 \sqrt {d-c^2 d x^2}}\\ &=\frac {b \sqrt {-1+c x} \sqrt {1+c x}}{6 c d^2 \left (1-c^2 x^2\right ) \sqrt {d-c^2 d x^2}}+\frac {2 x \left (a+b \cosh ^{-1}(c x)\right )}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {x \left (a+b \cosh ^{-1}(c x)\right )}{3 d^2 (1-c x) (1+c x) \sqrt {d-c^2 d x^2}}+\frac {\left (2 b c \sqrt {-1+c x} \sqrt {1+c x}\right ) \int \frac {x}{1-c^2 x^2} \, dx}{3 d^2 \sqrt {d-c^2 d x^2}}\\ &=\frac {b \sqrt {-1+c x} \sqrt {1+c x}}{6 c d^2 \left (1-c^2 x^2\right ) \sqrt {d-c^2 d x^2}}+\frac {2 x \left (a+b \cosh ^{-1}(c x)\right )}{3 d^2 \sqrt {d-c^2 d x^2}}+\frac {x \left (a+b \cosh ^{-1}(c x)\right )}{3 d^2 (1-c x) (1+c x) \sqrt {d-c^2 d x^2}}-\frac {b \sqrt {-1+c x} \sqrt {1+c x} \log \left (1-c^2 x^2\right )}{3 c d^2 \sqrt {d-c^2 d x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.09, size = 132, normalized size = 0.81 \[ \frac {4 a c^3 x^3-6 a c x-2 b \sqrt {c x-1} \sqrt {c x+1} \left (c^2 x^2-1\right ) \log \left (1-c^2 x^2\right )+2 b c x \left (2 c^2 x^2-3\right ) \cosh ^{-1}(c x)-b \sqrt {c x-1} \sqrt {c x+1}}{6 c d^2 \left (c^2 x^2-1\right ) \sqrt {d-c^2 d x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*ArcCosh[c*x])/(d - c^2*d*x^2)^(5/2),x]

[Out]

(-6*a*c*x + 4*a*c^3*x^3 - b*Sqrt[-1 + c*x]*Sqrt[1 + c*x] + 2*b*c*x*(-3 + 2*c^2*x^2)*ArcCosh[c*x] - 2*b*Sqrt[-1
 + c*x]*Sqrt[1 + c*x]*(-1 + c^2*x^2)*Log[1 - c^2*x^2])/(6*c*d^2*(-1 + c^2*x^2)*Sqrt[d - c^2*d*x^2])

________________________________________________________________________________________

fricas [F]  time = 1.27, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {\sqrt {-c^{2} d x^{2} + d} {\left (b \operatorname {arcosh}\left (c x\right ) + a\right )}}{c^{6} d^{3} x^{6} - 3 \, c^{4} d^{3} x^{4} + 3 \, c^{2} d^{3} x^{2} - d^{3}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(5/2),x, algorithm="fricas")

[Out]

integral(-sqrt(-c^2*d*x^2 + d)*(b*arccosh(c*x) + a)/(c^6*d^3*x^6 - 3*c^4*d^3*x^4 + 3*c^2*d^3*x^2 - d^3), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {b \operatorname {arcosh}\left (c x\right ) + a}{{\left (-c^{2} d x^{2} + d\right )}^{\frac {5}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(5/2),x, algorithm="giac")

[Out]

integrate((b*arccosh(c*x) + a)/(-c^2*d*x^2 + d)^(5/2), x)

________________________________________________________________________________________

maple [B]  time = 0.30, size = 1073, normalized size = 6.62 \[ \frac {a x}{3 d \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}+\frac {2 a x}{3 d^{2} \sqrt {-c^{2} d \,x^{2}+d}}-\frac {4 b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \mathrm {arccosh}\left (c x \right )}{3 d^{3} c \left (c^{2} x^{2}-1\right )}+\frac {2 b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, c^{4} \left (c x -1\right ) \left (c x +1\right ) x^{5}}{3 \left (3 c^{6} x^{6}-10 c^{4} x^{4}+11 c^{2} x^{2}-4\right ) d^{3}}-\frac {2 b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, c^{6} x^{7}}{3 \left (3 c^{6} x^{6}-10 c^{4} x^{4}+11 c^{2} x^{2}-4\right ) d^{3}}+\frac {2 b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, c^{3} \mathrm {arccosh}\left (c x \right ) \sqrt {c x -1}\, \sqrt {c x +1}\, x^{4}}{\left (3 c^{6} x^{6}-10 c^{4} x^{4}+11 c^{2} x^{2}-4\right ) d^{3}}-\frac {2 b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, c^{4} \mathrm {arccosh}\left (c x \right ) x^{5}}{\left (3 c^{6} x^{6}-10 c^{4} x^{4}+11 c^{2} x^{2}-4\right ) d^{3}}-\frac {5 b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, c^{2} \left (c x -1\right ) \left (c x +1\right ) x^{3}}{3 \left (3 c^{6} x^{6}-10 c^{4} x^{4}+11 c^{2} x^{2}-4\right ) d^{3}}+\frac {7 b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, c^{4} x^{5}}{3 \left (3 c^{6} x^{6}-10 c^{4} x^{4}+11 c^{2} x^{2}-4\right ) d^{3}}-\frac {14 b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, c \,\mathrm {arccosh}\left (c x \right ) \sqrt {c x -1}\, \sqrt {c x +1}\, x^{2}}{3 \left (3 c^{6} x^{6}-10 c^{4} x^{4}+11 c^{2} x^{2}-4\right ) d^{3}}+\frac {17 b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, c^{2} \mathrm {arccosh}\left (c x \right ) x^{3}}{3 \left (3 c^{6} x^{6}-10 c^{4} x^{4}+11 c^{2} x^{2}-4\right ) d^{3}}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (c x -1\right ) \left (c x +1\right ) x}{\left (3 c^{6} x^{6}-10 c^{4} x^{4}+11 c^{2} x^{2}-4\right ) d^{3}}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, c \sqrt {c x +1}\, \sqrt {c x -1}\, x^{2}}{2 \left (3 c^{6} x^{6}-10 c^{4} x^{4}+11 c^{2} x^{2}-4\right ) d^{3}}-\frac {8 b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, c^{2} x^{3}}{3 \left (3 c^{6} x^{6}-10 c^{4} x^{4}+11 c^{2} x^{2}-4\right ) d^{3}}+\frac {8 b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \mathrm {arccosh}\left (c x \right ) \sqrt {c x -1}\, \sqrt {c x +1}}{3 \left (3 c^{6} x^{6}-10 c^{4} x^{4}+11 c^{2} x^{2}-4\right ) c \,d^{3}}-\frac {4 b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \mathrm {arccosh}\left (c x \right ) x}{\left (3 c^{6} x^{6}-10 c^{4} x^{4}+11 c^{2} x^{2}-4\right ) d^{3}}-\frac {2 b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}}{3 \left (3 c^{6} x^{6}-10 c^{4} x^{4}+11 c^{2} x^{2}-4\right ) c \,d^{3}}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, x}{\left (3 c^{6} x^{6}-10 c^{4} x^{4}+11 c^{2} x^{2}-4\right ) d^{3}}+\frac {2 b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {c x -1}\, \sqrt {c x +1}\, \ln \left (\left (c x +\sqrt {c x -1}\, \sqrt {c x +1}\right )^{2}-1\right )}{3 d^{3} c \left (c^{2} x^{2}-1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(5/2),x)

[Out]

1/3*a/d*x/(-c^2*d*x^2+d)^(3/2)+2/3*a/d^2*x/(-c^2*d*x^2+d)^(1/2)-4/3*b*(-d*(c^2*x^2-1))^(1/2)*(c*x-1)^(1/2)*(c*
x+1)^(1/2)/d^3/c/(c^2*x^2-1)*arccosh(c*x)+2/3*b*(-d*(c^2*x^2-1))^(1/2)/(3*c^6*x^6-10*c^4*x^4+11*c^2*x^2-4)*c^4
/d^3*(c*x-1)*(c*x+1)*x^5-2/3*b*(-d*(c^2*x^2-1))^(1/2)/(3*c^6*x^6-10*c^4*x^4+11*c^2*x^2-4)*c^6/d^3*x^7+2*b*(-d*
(c^2*x^2-1))^(1/2)/(3*c^6*x^6-10*c^4*x^4+11*c^2*x^2-4)*c^3/d^3*arccosh(c*x)*(c*x-1)^(1/2)*(c*x+1)^(1/2)*x^4-2*
b*(-d*(c^2*x^2-1))^(1/2)/(3*c^6*x^6-10*c^4*x^4+11*c^2*x^2-4)*c^4/d^3*arccosh(c*x)*x^5-5/3*b*(-d*(c^2*x^2-1))^(
1/2)/(3*c^6*x^6-10*c^4*x^4+11*c^2*x^2-4)*c^2/d^3*(c*x-1)*(c*x+1)*x^3+7/3*b*(-d*(c^2*x^2-1))^(1/2)/(3*c^6*x^6-1
0*c^4*x^4+11*c^2*x^2-4)*c^4/d^3*x^5-14/3*b*(-d*(c^2*x^2-1))^(1/2)/(3*c^6*x^6-10*c^4*x^4+11*c^2*x^2-4)*c/d^3*ar
ccosh(c*x)*(c*x-1)^(1/2)*(c*x+1)^(1/2)*x^2+17/3*b*(-d*(c^2*x^2-1))^(1/2)/(3*c^6*x^6-10*c^4*x^4+11*c^2*x^2-4)*c
^2/d^3*arccosh(c*x)*x^3+b*(-d*(c^2*x^2-1))^(1/2)/(3*c^6*x^6-10*c^4*x^4+11*c^2*x^2-4)/d^3*(c*x-1)*(c*x+1)*x+1/2
*b*(-d*(c^2*x^2-1))^(1/2)/(3*c^6*x^6-10*c^4*x^4+11*c^2*x^2-4)*c/d^3*(c*x+1)^(1/2)*(c*x-1)^(1/2)*x^2-8/3*b*(-d*
(c^2*x^2-1))^(1/2)/(3*c^6*x^6-10*c^4*x^4+11*c^2*x^2-4)*c^2/d^3*x^3+8/3*b*(-d*(c^2*x^2-1))^(1/2)/(3*c^6*x^6-10*
c^4*x^4+11*c^2*x^2-4)/c/d^3*arccosh(c*x)*(c*x-1)^(1/2)*(c*x+1)^(1/2)-4*b*(-d*(c^2*x^2-1))^(1/2)/(3*c^6*x^6-10*
c^4*x^4+11*c^2*x^2-4)/d^3*arccosh(c*x)*x-2/3*b*(-d*(c^2*x^2-1))^(1/2)/(3*c^6*x^6-10*c^4*x^4+11*c^2*x^2-4)/c/d^
3*(c*x-1)^(1/2)*(c*x+1)^(1/2)+b*(-d*(c^2*x^2-1))^(1/2)/(3*c^6*x^6-10*c^4*x^4+11*c^2*x^2-4)/d^3*x+2/3*b*(-d*(c^
2*x^2-1))^(1/2)*(c*x-1)^(1/2)*(c*x+1)^(1/2)/d^3/c/(c^2*x^2-1)*ln((c*x+(c*x-1)^(1/2)*(c*x+1)^(1/2))^2-1)

________________________________________________________________________________________

maxima [A]  time = 0.71, size = 157, normalized size = 0.97 \[ \frac {1}{6} \, b c {\left (\frac {\sqrt {-d}}{c^{4} d^{3} x^{2} - c^{2} d^{3}} + \frac {2 \, \sqrt {-d} \log \left (c x + 1\right )}{c^{2} d^{3}} + \frac {2 \, \sqrt {-d} \log \left (c x - 1\right )}{c^{2} d^{3}}\right )} + \frac {1}{3} \, b {\left (\frac {2 \, x}{\sqrt {-c^{2} d x^{2} + d} d^{2}} + \frac {x}{{\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}} d}\right )} \operatorname {arcosh}\left (c x\right ) + \frac {1}{3} \, a {\left (\frac {2 \, x}{\sqrt {-c^{2} d x^{2} + d} d^{2}} + \frac {x}{{\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}} d}\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*arccosh(c*x))/(-c^2*d*x^2+d)^(5/2),x, algorithm="maxima")

[Out]

1/6*b*c*(sqrt(-d)/(c^4*d^3*x^2 - c^2*d^3) + 2*sqrt(-d)*log(c*x + 1)/(c^2*d^3) + 2*sqrt(-d)*log(c*x - 1)/(c^2*d
^3)) + 1/3*b*(2*x/(sqrt(-c^2*d*x^2 + d)*d^2) + x/((-c^2*d*x^2 + d)^(3/2)*d))*arccosh(c*x) + 1/3*a*(2*x/(sqrt(-
c^2*d*x^2 + d)*d^2) + x/((-c^2*d*x^2 + d)^(3/2)*d))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \frac {a+b\,\mathrm {acosh}\left (c\,x\right )}{{\left (d-c^2\,d\,x^2\right )}^{5/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*acosh(c*x))/(d - c^2*d*x^2)^(5/2),x)

[Out]

int((a + b*acosh(c*x))/(d - c^2*d*x^2)^(5/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {a + b \operatorname {acosh}{\left (c x \right )}}{\left (- d \left (c x - 1\right ) \left (c x + 1\right )\right )^{\frac {5}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*acosh(c*x))/(-c**2*d*x**2+d)**(5/2),x)

[Out]

Integral((a + b*acosh(c*x))/(-d*(c*x - 1)*(c*x + 1))**(5/2), x)

________________________________________________________________________________________